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ABSTRACT

With the technology advancements, radar sensors have become cheaper and smaller.
They have taken an important role in our automated life. In many situations it is very
important to keep track of the people count.

The aim of this thesis is to use the selected 24GHz Infineon FMCW radar to
recognize human walking pattern and find a way to distinguish walking human from
other objects. Several tests were designed and conducted; the raw radar images are then
recorded. These raw radar data are first processed to reduce noise clutter so that target
detection is optimal. Then the targets are tracked using Kalman filter to extract the pattern
sequences.

To further investigate the dynamic behavior of the walking pattern. The micro-
Doppler effect of the walking pattern is studied. A simplified model of walking pattern is
presented. Several features of the pattern are proposed and are extracted from the
recordings of different test scenarios using a two pass processing technique. Then the
results from the different tests are compared.

At last, a radar recording and tracking system is implemented to test the proposed

approach for the walking pattern recognition.
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1 Introduction

Radar sensors have many advantages over traditional image sensors. They are
robust, able to function in relative harsh environment. They are widely used in
automotive industry, avionic industry military field and others. Another major benefit of
radar sensors is privacy protection. Unlike traditional image sensor, radar image produced
by current radar sensors usually doesn’t contain enough details to identify individuals.
Therefore they are the better candidate to work in privacy sensitive location where data
protection is a major concern. Nowadays they can even fit inside mobile phones to
provide gesture recognition [1].

In radar principle, moving targets have a frequency shift in the radar return signal
due to Doppler Effect. For targets with rigid body in ideal cases, the movement pattern of
different part of the target is similar; therefore the frequency shift of all parts is usually
unanimous. Thus they often have a very narrow Doppler profile in radar range-Doppler
frame, e.g. vehicles. However, most targets have many different movable parts, and each
part has its own movement pattern relative to the radar, which means each part has its
own Doppler profile. The variation of Doppler profile often results in weaker patterns
around the main target detection in radar frames. This effect is named Micro-Doppler
Effect [2].

In recent years, radar sensors have received a great amount of development. With
the development of advanced manufacturing techniques, radar modules are becoming
smaller and cheaper yet with higher performance. The resolution of radar sensor has
increased greatly. The Micro-Doppler Effect now can be easily observed in radar frames.
Since they are the direct result of object movement, with proper signal processing
technique, the information regarding the target movement pattern can be obtained. Then
further target classification is possible.

In this thesis, the Infineon 24 GHz radar kit is used to capture the micro-Doppler
pattern of human walking. The pattern is then analyzed so that correct detection of human

walking can be achieved for people counting applications.



1.1 Motivation

People counting can be especially useful and crucial in many applications. For
example in big shopping malls, keeping track of the number of people in the building is
critical for management purposes or in the case of emergency. When in car accidents, the
number of people in vicinity is vital information for the ADAS system to react correctly
and safely.

Since radar only detects moving objects, the walking pattern needs to be modeled so
that the detection can be stable. Current researches often focus on the detection of the
main target and ignore the Micro-Doppler pattern. Therefore a proper study of the

Micro-Doppler pattern is important for recognizing human walking detections.

1.2 Problem Statement

The purpose of this thesis is to develop a system to detect and distinguish walking
human from non-human objects. So that such information can be used in people counting
applications. Since the Micro-Doppler pattern contains rich information regarding the
movement pattern of the target, an approach to extract this information should be
established.

To achieve this, the target signal first needs to be detected from the raw data
samples, a proper method to reduce noise and detect target needs to be found. Then an
approach to track the target needs be established, so that a continuous study of the
interested target is possible. Afterwards the model of the walking pattern needs to be
established and simplified so that the features of the walking patterns can be correctly

extracted.



1.3 Research Method

The research method in this paper is primarily literature review and experiments. At
first the existing solution of the encountered problems are researched, then the
measurement cases are designed, and the radar raw frames are collected. Afterwards these
data are analyzed in Matlab to test the signal processing algorithms found in current
research. The results in the end validate the theory obtained in literature review. If the
result is not up to satisfactory, modifications are made to the measurement cases and the
corresponding signal processing steps, and then the process restart again. This makes sure
that the theory and the implementation matched together to works on the Infineon radar

platform.



2 Related work

This thesis is a continuation of a previous research work on the same Infineon
24GHz radar kit [4], in which the communication protocol between the radar and
computer is explored. This chapter presents an overview of the Infineon automotive radar
kit and some current research on detection, tracking and classification technique.
Afterwards the measurement cases is described, where the participating people are

moving in a specified way and corresponding radar frames are collected.

2.1 Infineon 24 GHz FMCW Radar kit

Electromagnetic (EM) waves can be absorbed and reflect when in contact with the
surface of objects; the reflected signal always contains the range, velocity and angle
information of the object due to the Doppler Effect. Radar is the sensor that sends a
predefined EM wave and monitors the return wave to obtain the range, velocity and angle
information. By the continuity of the transmitted EM wave, radar sensor can be classified
into Continuous Wave (CW) radar and Pulsed radar. The CW radar can also be divided
into unmodulated radar and modulated radar (FMCW), depending on modulation of the
transmitted EM wave (modulation scheme). Compared with the unmodulated radar, The
FMCW radar can detect range information while unmodulated radar can only detect
velocity information. Angle detection can be achieved by implementing more than one
received antennas. The angle information can be calculated from the time delay of the
signal in different antennas [5].

The selected Infineon 24 GHz Automotive radar kit is a programmable platform to
implement radar applications. Figure 1 shows the picture of the setup used in this thesis.
Figure 2 is the block diagram of the Infinion 24 GHz automotive radar kit [3]. The main
microcontroller TC264DA first modulates the radio signal and sends it to an external
DAC DAC7552. Then the modulated analog signal is sent to the transceiver
BGT24ATR12 and transmitted through a transmitter antenna. The same transceiver also

receives the returned radio signal from two receiver antenna and sends them through LPF



(Low Pass Filter) and LNA (Low Noise Amplifier). Then the TC264DA samples the

analog return signal to obtain the raw radar samples.

Figure 1: Infinion 24 GHz automotive radar kit
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Figure 2: Infinion 24 GHz automotive radar kit block diagram [3]



The onboard microcontroller TC264DA has a built-in FFT engine. Further

processing on the raw radar samples can be performed on board without the need of

external computer. In practice the raw samples are transmitted through the Ethernet port

to a computer so that several algorithms can be tested.

The modulation scheme of the Infineon radar kit is fast chirp. Compared with

normal chirp rate, fast chirp improves the range resolution of the radar and in the

meantime maintains the accuracy for the velocity measurement. Figure 3 shows the fast

chirp scheme that used in the Infineon radar kit. Each radar frame corresponds to 128

chirps, each chirp contains 128 samples.

frequency (GHz)

24.25

24

Frame 1

128 chrips

Inter-frame

48 chirps

duration

Frame 2
128 chrips

ol-f===== ===

Figure 3: FMCW fast chirp scheme [4]

Table 1 and table 2 lists the resolutions and performance specifications of the

Infineon radar kit.

resolution Max range
Range 0.6m, 38.4m
velocity +0.49km/h +31.5 km/h
angle 1 degree 50 degree

Table 1: Resolutions of Infineon radar kit [4]

Carrier frequency 24GHz
Wavelength 1.25¢cm
Sweep bandwidth 250MHz
ADC sample frequency 366.3kHz
Number of samples per chirp 128
Number of chirps per measurement | 128
Sweep period 354.9us

Table 2: Specifications of Infineon radar kit [4]



2.2 Current Research

The first step of radar image processing is noise removal. M. Hozhabri has presented
a few clutter techniques in her work to remove clutters [6]. Then to obtain the correct
detection from noise, several target detection method can be applied, including CFAR.
Some clustering algorithms can also be applied for detection association. N. Carlstrom
has used DBSCAN to assign correct detection to a target [7].

For target tracking, the Kalman filter can be used [8]. The extended Kalman filter
[9] can also be applied here to make use of the radial velocity.

To classify different targets, S. Heuel and H. Rohling use SVM to classify the
features of target range-Doppler profile [10]. Also they use the af filter for target
tracking and a two stage target classification technique to classify the range-Doppler
profile of targets [11]. However, these two researches did not take into account the
periodic movement pattern of human walking.

A. Sundaresan and his associates have presented a method to recognize human from
gait sequences based on Hidden Markov Model [12], which shows that the movement

pattern of walking could be utilized for human recognition.



2.3 Measurement Cases

To properly analyze the raw data samples from the radar. The raw data packets are
captured with the data capture system radar viewer developed in the previous work.
Several test cases are conducted. In each test case, there may be more recordings made
with different conditions. Recording made outdoor is done outside the FH-Dortmund
main building. Recordings made indoor are done in a tent in Fredenbaum Park,
Dortmund. Due to equipment limitations, one test is done inside the lab of FH-Dortmund.
The specific test conditions (e.g., length and width of the test areas) are not provided,
since these tests are to test the proof of concept implementation of the system. Figure 4

shows the two photos of the testing areas.

Figure 4: inside a tent (left), outside FH-Dortmund main building (right)

After the recording, the raw data files are processed in Matlab where various signal

processing algorithms are tested.



Test case 1

Scenario: One people walking (longitudinal and lateral)

Objective: Test the basic measurement capabilities of the developed system.

Description: As shown in Figure 5 left image, the person is walking longitudinally
away from the radar, AoA 0 is 0. When the person reaches to line L2, he turns around and
walks directly towards the radar, also with 8 = 0. The distance between L1 and L2 is D.
In Figure 5 right image, the person starts at A and walking directly to the right side, AoA
0 is continuously changing. When the person reaches location A’, he then turns around

and walks back to A. The distance between A/A’ to radar center line is L.

Test 1.1to 1.9 Test 1.10 L L
L2 T L2 —————
. A <S>
1 A Q : O A
I \ Lateral
Longitudinal 1 \ : atera
i : ‘\ | moving
moving
1D \ 1
1 vo!
\
| 'S
1 v
1A | v
1 | i
\
N — N e
Radar Radar

Figure 5: movement setup of test case 1

Tests 1.1 to 1.7 are the longitudinal walking of adults. Test 1.8 is the longitudinal
walking of a child. Test 1.9 is the longitudinal moving of a cart tray, no walking pattern
presents. Test 1.10 is the lateral walking of person A.

Test 1.1: person E is walking casually outdoor.

Test 1.2: person A is walking casually inside a tent.

Test 1.3: person A is walking slower inside a tent.

Test 1.4: person A is walking casually inside a tent with hands in pockets.

Test 1.5: person A is running inside a tent.

Test 1.6: person B is walking casually inside a tent.

Test 1.7: person C is walking casually inside a tent.

Test 1.8: person D (child) is walking casually inside a tent.

Test 1.9: person A is a moving cart tray in a lab.

Test 1.10: person A is walking casually inside a tent (lateral).



Test case 2
Scenario: Two people walking (longitudinal and lateral)
Objective: To test the two target measurement capabilities of the developed system.
Description: As shown in Figure 6, 4 tests are made with each individual movement

pattern. Each test is described below:

Test 2.1 Test 2.2
L2 T T 12 T T T
1 1 B 4\ 1 1 1 4\
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
Lo 1 1 !
Longitudinal | . : A 1 B :
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| . 1 1 1 |
! 1 Longitudinal ! ! ! 1
\ . 1 1 1 |
1 | moving | ! 1
1 ! ! 1
1 ! ! 1
L1 1'% LI ' ' v
Radar Radar
Test 2.3 Test 2.4
L2 T T L2 !
1 1 4\ ! 4\
1 1 I
1 1 I
[} 1 |
| ' A '
A 0, 1 Longitudinal : D Longitudinal 1 :D
! moving : moving :
| 1
1 B 1
1 ' !
1 : !
M e ———
Radar Radar

Figure 6: movement setup of test case 2

Test 2.1: different angle, different range-Doppler profile

There are two people. Person A is located at line L1 and walks longitudinal towards
line L2. When A reaches line L2, he then turns around and walks back towards L1 also in
a straight line. Similarly, the other person B starts at line L2 and walks towards line L1 at
the same time. When B reaches line L1, he turns around and walks back to L2. 0, is the
azimuth angle between person A and radar, 0, is for person B. This test is made to

evaluate the basic two targets (different angle) tracking.
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Test 2.2: different angle, similar range-Doppler profile

Two people A and B are located at each side of the radar at line L1, and then they
walk longitudinally from the line L1 towards L2 at a similar pace (with similar speed).
When they reach line L2, they walk away from L2 and walk towards L1. 0; is the
azimuth angle between person A and radar, 0, is for person B. This test is made to
evaluate the basic angle separation of the system. Since A and B are of similar range-

Doppler profile.

Test 2.3: similar angle, different range-Doppler profile

Two people A and B are both located at the left side of the radar at line L1. Person A
first walk longitudinally from the line L1 towards L2. After a few seconds, person B
follows the same path of A. When they reach line L2, they walk away from L2 and walk
towards L1. 0, is the azimuth angle between person A and radar, 0, is for person B. This

test is made to evaluate two targets (similar angle) tracking.

Test 2.4: same angle, blocked signal

Two people A and B are both located in front of the radar at line L1. Person A first
walk longitudinally from the line L1 towards L2. After a few seconds, person B follows
the same path of A. When they reach line L2, they walk away from L2 and walk towards
L1. The AoA 6 for person A and B is always 0. This test is made to evaluate the signal
blocking effect.

Tests 2.1 to 2.4 are all done inside the big tent with two people walking casually.

11



Test case 3

Scenario: Three people walking (longitudinal).

Objective: To test the three target measurement capabilities of the developed system.

Description: As shown in Figure 7 below. Three people A, B, and C are located at
line L1. A, C are located at each side of the radar, B is located in front of the radar. Then
they walk away from the line L1 towards L2 longitudinally at a similar pace (with similar
speed). When they reach line L2, they walk away from L2 and walk towards the start
location at L1. 0 is the AoA of person A, 0, is the AoA of person C. The AoA for person
B is 0. This test is made to evaluate the angle separation performance of the system
further.

Test 3

L2

Longitudinal

moving

Radar

Figure 7: movement setup of test case 3
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3 Signal Preprocessing

To extract desired target information from the received raw radar data, certain pre-
processing must be performed on the radar raw images. Figure 8 shows the overview of
all the blocks in the signal preprocessing; the complete signal preprocessing is done on

the computer side. A short description is provided below:

% . Enhanced signal
Ethernet 1, Packet§ 4, Signal
_— Preprocessing Enhancement

2 channel (optinal)

ADC samples

To track
2,2D FFT & 3, Clutter > 5, Target o
A0A calculation Removal Detection

Figure 8: signal pre-processing blocks

In block 1, after the data packets are received from Ethernet, they are checked for
packet loss, and then the raw data samples are extracted from these packets.

Block 2 performs the 2D FFT on the raw ADC samples to calculate the initial radar
frame and the corresponding angle of arrival (AoA).

Block 3 reduces the environment noise of the raw radar frame to an acceptable level.

Block 4 is developed to amplify the weak signal. However, the noise is also
increased; therefore this block is optional for target detection depending on actual
requirement.

In block 35, firstly, an angle separation step is introduced. The primary purpose of the
angle separation is to separate signals with angle differences so that target detection can
be more accurate. Then based on the signal to noise ratio (SNR), target detection can be
declared with certain algorithms in the target detection block. Two detectors are presented
and tested in this chapter: the local maxima detector and the CA-CFAR detector.

Block 1 and 2 belong to the previous work on the Infineon radar module. This
chapter is divided into three sections, each focuses on the three later blocks: clutter
removal, signal enhancement, and target detection. Each section provides the theory and

algorithms first and then the processed results for evaluation.

13



3.1 Clutter Removal

To properly process the signal noise, the averaged environmental noise is first
measured. Figure 9 shows a complete noise frame calculated from 20 continuous frames
(with no moving objects) of a saved recording measured indoor (about 1.1874s). To
achieve this, the image of the stationary environment (without moving objects) is
measured and considered to be the environment noise. The environment noise is
measured for a certain duration and used to calculate a carefully arranged noise image, it
is then be used for noise subtraction for all radar images at that same location.

The mirrored image to the left is not removed. The SNR scale is set to 1e3, so that
the detailed noise clutters are visible. There are two types of clutters presents, stationary
clutter (marked as A) and correlated clutter (marked as B). Stationary clutter mainly
located around Doppler bin number 64 (63 to 65) and spans across the whole range bin.
Correlated clutter in this setup mainly stays at a specific range bin and spans multiple
Doppler bins, but the number of Doppler bins varies. Stationary clutter could be easily

removed by setting the entire clutter to zeros.

mean environment noise mean environment noise
1000

range, 128 bin
I
8
SNR
range, 64 bin
I
8
SNR

20 40 60 80 100 120 20 40 60 80 100 120
doppler, 128 bin doppler, 128 bin

Figure 9: noise image (left), noise image with stationary clutter cleared (right)

As shown in Figure 9 right image, both the clutter in the middle and the bottom
middle is cleared. The four correlated clutters seem evenly distributed across range bins.
With the increasing of range bin, the clutter strength is also decreeing. However, the

location of these correlated clutters is consistent during the operation.
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Let o, gbe the range-Doppler frame produced by processing enough packets. In this
case, 0, 4 1s obtained by receiving and processing 128 packets from 128 fast chirps,
r=1..128,d =1..128 . Since the Infineon radar kit has angle measurement
capabilities, let 6, zbe the angle measurement frame of the corresponding o, 4. Therefore
each measurement consists of two frames, 8, 4 and o, 4.

Let n, ;4be the SNR value of the mean environment noise with stationary clutter
cleared and the mirror image removed, the range bin r, and Doppler bin d, as shown in
Figure 9 right side. n, 4 can be calculated with Eq. 3.1 (There are some clutter cells at the
bottom also removed, please see the source for detailed cell number). The mean Doppler
bin SNR value S, is calculated using Eq. 3.2:

Ny.a = Or=(65:128),d=(1:62,66:128) Eq.3.1

= 1
$p == X na Eq.3.2

The original black line in the following Figure 10 shows the S, of each range bin
across all Doppler bins. The four peaks represent the projection of four correlated clutters
on the range bin axis. Each peak has a fixed width of Wpeqk, Wpeqr = 3 in this case.
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Figure 10: mean Doppler bin SNR plot
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To reduce the averaged environment noise even more, the areas around each peak
will be multiplied by a factor NR (noise ratio). The red line in Figure 10 is the adjusted
Doppler bin SNR where only the peak value is multiplied with a factor NR=1.5. In this
way, the correlated clutter will receive more reduction compared with other regions. The
process is defined as follows:

Let p, be the range bin of peaks found in the S,..

For each p, do:

For all r
Ifr = round(p, + %) then

Nyg =MNypgqg - NR;

end

end

end

With the calculated averaged environment noise n,,; , for each actual

measurement m, 4, the processed signal a, 4 can be written as Eq. 3.3:

0 = {mr,d —Nyq, fMpg >Npg Eq.33
rd — . ..
' 0, otherwise
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Figure 11: test frame n, 4 (left), max Doppler bin SNR (right)
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Figure 11 left shows a test frame n, 4 from a saved recording, the target is clearly
visible inside the marked red circle, The relative peak can be measured at r =29, d = 71.

The right image shows the maximum SNR found in each range bin across all
Doppler bins. The max Doppler SNR Smax, is calculated as Eq. 3.4:

Smax, = maxg=1.128(Myq) Eq.3.4

As can be seen, the original black plot has six major peaks, peak at r=9 has the
largest SNR value. However, of all these peaks, only the peak at r=29 relates to actual
target detection, the other peaks are background noises. The red plot and blue plot are two
attempted a, 4 to remove the noise n, 4, one with NR=1.5 (red plot) and NR=2(blue
plot). The results of the 2 attempts are mostly the same except at the location where the
noise peaks are. With NR=1.5, the noise peak at r=9 is still somehow comparable with
actual detection at r=29. Only with NR=2, noise peaks are reduced further.

Although the clutter removal can remove most noises from the measurement frame
a,q, In practice, there are still very few noise points left. When converting these noise
points to Cartesian coordinates, these points tend to stay close to some specific points.

The following method considered to reduce these noise points in Cartesian system.

noise points in cartesian system, threshold=3e2
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Figure 12: environment noises in Cartesian system
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Figure 12 shows all the noise points in the above mentioned 20 continuous
environment noise frames converted to Cartesian coordinates. There are mainly five noise
clusters; each one has a relatively large x range spread. These clusters are first separated,
and then the mean noise point for each cluster is calculated. If any detection point is
within a specific range of these mean noise points, then it should be considered as a noise
point.

The cause of the correlated clutters shown in the test frame is not clear, it may be
related to antenna cross talk. They have a comparably large affected area. The advantage
of environment noise subtraction shown in this section is the ability to remove the false
peaks while keeping other signal areas intact. However, when the target detection is close
to the noises, the actual signal is subtracted as well, making later detection difficult.

There is another type of noise clutter that can be found in the Infineon radar system,
named ghost targets. When the actual target is at close proximity of the radar, the return
radar EM waves are reflected again and received again by the radar. Then it manifests
itself in the range-Doppler plot as a ghost target. The ghost target shares the same
Doppler profile with the actual target, while the range profile doubles. To prevent the
ghost targets, all test cases in chapter 2.3 were done in relatively open space and kept

some distance away from the radar.
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3.2 Weak Signal Enhancement

The following Figure 13 shows the range-t plot (left) and the Doppler-t plot (right)
of test 1.1 described in chapter 2.3. A person is first walking away from the radar and
then walking towards the radar for totally about 40 seconds. The SNR threshold = 5e2,
NR = 2. As the distance between the person and the radar module increases, the received
signal at the radar becomes weaker. The Doppler spread of the target also decreases. If
the SNR threshold is smaller, a lot of extra noises are introduced into the images.

Therefore, a method to amplify the weak signal should be considered.

range-t plot doppler-t plot
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Figure 13: range-t and Doppler-t of recording [three]

The time gain method:

The time gain method rises from the idea that signal strength correlates well with
traveled time from the radar system [13]. The traveled time correlates directly with the
distance from the radar to the target. With the processed data set a,. 4, time gain factor k.

b, 4 can be calculated with Eq. 3.5.
brg=arqg -5k=12,..,n Eq. 3.5 [13]

By multiplying the distance factor to the signal, the signal that far away can be

increased significantly, Figure 14 below shows the Mean Doppler bin SNR S,.of the same
image in Figure 11, with NR=2. The black plot is the original a,. 4, red and blue plots
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represents the corresponding b, 4 with k=1 and k=2. As can be seen, not only the target

signal is amplified, the noise is increased dramatically. Especially for k=2.
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Figure 14: S, of Figure 11 test frame

To explore the time gain effect throughout time, Figure 14 shows the max Doppler
SNR Smax, of the entire recording of test 1.1, which consists of 662 frames, The
threshold=1e3, NR=2 in this test case. As can be seen, without the time gain, the original
(black plot) signal strength decreases rapidly with the increase of distance. With k = 1
(red plot), the SNR decreases slower. With k=2 (blue plot), the SNR becomes relatively
stable over distance, which means a stable target pattern could be preserved with longer
distance.

Figure 16 shows the result when applying the time gain method to the recording of
test 1.1, time gain k=2, the threshold is adjusted to 3e5. In the left image, the target image
at around 20s is clearly visible. In the right image, the walking pattern is visible all the
time and the Doppler spread is relatively stable.

The time gain method works very well for weak signals far away from the radar.
However, it also amplifies existing noises, making later signal detection difficult.
Therefore it mainly used in situations when signal detection is positive and target pattern

extraction is desired.
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3.3 Signal Detection

Once the signal has gone through environment noise subtraction and weak signal
enhancement, a target signal detector can be used to pick out the correct signal out of
noises. However, if two targets have similar range-Doppler profile, they will show up
very close to each other in the radar measurement frame a, 4, which makes it extremely
difficult to separate these two targets. For radar modules with angle measurement
capabilities, an angle analysis could be introduced to separate these targets easily.

In this section, an angle separation method is discussed first to explore the
possibilities to separate a, 4 based on the angle measurement 8, ;. Also two signal
detection methods are presented and reviewed. They can work individually or combined

to give a better result.

3.3.1 Angle Pre-separation

The range-Doppler plot does not contain angle information of the target. When
targets share a similar range and velocity profile, they will share a similar location in the
range-Doppler plot. The separation of these targets is challenging. For each a, 4 in the
radar frame, find the corresponding 6, 4. By counting the same 6, 4, a histogram plot of

6, 4 can be obtained.

angle theta distribution over time, test 2.2 angle theta distribution peaks

&0
ol

20 " ,
e s

LU , ) T

FROUILS - L

e R b
L A .\.-.\'\.,.‘..' .

angle, {degree)
angle, (degree)
o

-20

-40

-B0 -60

50 100 150 200 250 300 50 100 150 200 250 300
time, 341 measurementis time, 341 measurements

Figure 17: angle distribution of test 2.2 (left), angle distribution peaks (right)
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Figure 17 image to the left shows the 8, ; distribution over time of test 2.2. It can be
seen that the two strong signals represent two persons; each signal has a wide angle
range. A very intuitive way to separate the two strong signals is to find the angle value
that has the highest histogram count (peaks). Then separate all data between these peaks.
Figure 18 shows the angle distribution of frame 274 from test 2.2. Two peaks P, and Py

are clearly visible, which indicates the two targets (A and B) have the highest possibility

at -12 degree and 9 degree. To separate the two targets, the middle angle Py, = PatPs

—1.5 can be chosen as the separation angle. All data to the left side of Py belongs to
target A, and the other side belongs to target B. With more targets, the number of Py, will

also increase.

angle distribution at frame 274

10 P, (-12.10)

angle count

. . Ll . . |
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Figure 18: angle distribution of one frame

However, for the above mentioned angle separation method to work, the correct
detection of the target number in the frame is the key. Figure 17 right image is an attempt
to detect the number of targets by finding the 1D local maxima (g=7). The maxima with
less than 2 angle occurrences are ignored. Table 1 shows the maxima count for all 341

frames, which can be an indication of the target number.

Number of maxima 0 1 2 3 4

Number of frames 43 121 154 22 1

Table 3: Maxima count for test 2.2
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Although the number of the frame that has the correct number of targets (two
targets) is the highest in Table 3, there are still more than half (54.8%) frames that have
the incorrect number of the target numbers. Moreover, with the increase of targets, the
difficulty of angle separation also increases dramatically. Figure 19 shows the angle
distribution of test 3. With three people walking in a similar range-Doppler profile, only
the walking pattern (person B) in the middle is distinct, the other two people do not show
up clearly. These multiple targets share the same location on the range-Doppler plot,
therefore the more similar targets there are, the fewer detection points each target can

have. Finding the correct Py, to separate radar data, in this case, is very challenging.

angle theta distribution over time, test 3

angle, (degree)

50 100 150 200 250 300 350
time, 396 measurements

Figure 19: angle distribution of test 3

In this paper, the test cases can be divided into single target and multi-targets test
case. For single target test cases, the angle separation is not necessary. In test cases
involve two people, for a simple separation, Py, = 0 is used. The frame a, 4 is separated
by the signs of 8, 4, positive 8, 5 will have a right frame, and negative 6, ; will produce
a left frame. Then the two frames are sent to the detectors so that a less ambiguous

detection can be achieved.
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3.3.2 Local maxima detector

For a given processed 2d frame a, 4 or b, 4, there could be many strict local maxima
within. These strict local minima are all possible valid target detection. The local maxima
detector evaluates all local maxima within a neighboring area D. If a local maxima X is
larger than other local maxima in area D, then only X should be the target detection. In
this way, the relatively larger local maximum in the surrounding is selected to be the
target detection. The objective of the local maxima detector can be simplified to the

following:

Let a,4(r=1..128,d = 1..128) be the processed frame, find all local maxima
Mprma(mr =1...128,md = 1...128) in a, 4, such that the minimal range bin and

Doppler bin distance between each local maxima is g.

The algorithm of local maxima detection is described as:

For each a, ; do:

For each m,,; g inareaD ofa, g, mr = (r—g:r+g),md = (d — g:d + g)
boundary check;

If My ma > ar g, then a, 4 is not a local maxima,

clear a, 4;

continue to next a, 4;

end
end
If a, 4 > My mq, for all my,,. 1, in D, then a, 4 is a local maxima,

All elements in area D but a, 4 are cleared,;

end

end
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The area D in the above algorithm is defined as a square with a width of 2g + 1. It
could also be defined as other shapes such as a circle or rectangular. The maxima at the
boundaries are also evaluated in this algorithm, and they could be ruled out by adjusting
the elements of a, 4.

For a 1D array u,, the algorithm can be adapted to the following to find peak m,,,.:

for each u, do:
for each m,,,,- in area D of u,,, mr = (r — g:r + g)
boundary check;
if m,,, > u,, then u, is not a local maxima,

clear u,;

continue to next u,;

end

end

if u, > m,,,, for all m,,,- in D, then u, is a local maxima,
All elements in area D but u,. are cleared;

end

end

The local maxima detector is a simple yet effective signal detector; it does not rely
on a fixed threshold for detection. Thus it can detect a relatively weak signal. However, it
does not check for detailed signal quality. Therefore many noises can be treated as
positive detection if the noise is has a strong peak. Also the complexity of the algorithm

is 0(n?), with a large g, the algorithm can be slow.

3.3.3 CA-CFAR detector

Cell-averaging Constant False Alarm Rate (CA-CFAR) is a scheme to detect weak
signals by evaluating the surrounding cells. It calculates a dynamically changing
threshold used for detection from the surrounding cells by maintaining a constant

probability of false alarm Py, [14].
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For 2D CA-CFAR, Figure 20 shows the cell arrangement. The cell under test (CUT)
is marked as ‘C’. The cells directly adjacent to CUT are guard cells (marked as ‘X’), they
are excluded for the CUT evaluation. The outer layer cells (marked as ‘R’) are reference

cells; they are used to calculate the surrounding energy of the CUT.

AR R =R
el el e
I e I
el e el ]
AR R R R

Figure 20: CA-CFAR cell arrangement

In evaluation, if the values of CUT is larger than threshold Tz, (calculated with
Eq. 3.6 to Eq. 3.8), then the CUT is consider to be a target detection. a is the threshold

factor that depends on Pr,, Pyis the noise power estimation of the reference cells.

char = aPN Eq. 3.6
1
a=N(Pg ¥—1) Eq.3.7
1

The cell width of both guard cells and reference cells are flexible and depend on the
pattern of the interested target signal. Similar to the local maxima detector, the CUT is
evaluated with area D (area marked in R), here D is defined as a rectangular with width w
and height h, which relates to the walking pattern of a human. The details of the target
pattern are discussed in chapter 5.

In order to calculate the threshold, the energy of an area D is calculated, the cells at

the boundaries of a,. 4 are not evaluated.

The algorithm of CA-CFAR detection is described as:
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calculate alpha;

for each a, 4 do:

end

for each m,,,, ;g inarea D of a, g, mr = (r —w:r +w),md = (d — h:d + h),

sum up all elements in area D;
end
calculate the threshold Tcfar; 4;
ifa, 4 > Tcfar, 4, then a, 4 is a valid detection,
save ayq;

end

1, original, threshold=5e2

2, local maxima, g=5
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Figure 21: Target detection of frame 150
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Figure 21 shows a test frame a, 4 from a saved recording. It contains 4 subplots that
demonstrate the results using the two detector method in this section.

Subplot 1 shows the original frame with a normal threshold 5e2. Two targets (A and
B) are clearly visible with several noise points.

Subplot 2 shows the result of local maxima detector with g=5. All targets including
the noise points are treated as detections, which is not desirable.

Subplot 3 shows the result of CA-CFAR detector with w=3, h=10, and P, = le™'2.
Now the actual targets are correctly detected. However, the CA-CFAR detector has two
problems in this test. The tuning of Py, is critical for a successful detection, a less
optimal P, will results in either less detection or more noise detections. Also, since the
cells around the detection points usually have low signal energy, the CA-CFAR detector
tends to ignores them. For example, by comparing subplot 1 with subplot 3, the size of
target A is reduced significantly, and the shape of A is also changed. This does not benefit
the micro-Doppler study of the targets.

Subplot 4 shows the result of a combination of two detectors. By evaluating the
local maxima in the CA-CFAR detector, all noise detections are filtered out. The
remaining two points indicate the correct detection of the target core. By combining
subplot 4 with subplot 1, the original shape of the target can be extracted and further
processed.

In conclusion, both the local maxima detector and the CA-CFAR detector work well
for the Infineon radar kit. With a local maxima detector, false detection often occurs due
to noise points, which could be filtered out with CA-CFAR detector. However, the Pr,
tuning is critical and depends on the setup. In most situations, certain calibration is

required for the system to obtain a better performance.
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4 Target Tracking

After the successful target detection, the polar coordinate that contains the range,
radial velocity, and angle could be obtained for detected targets. Some other attributes,
including Doppler spread and angle spread could also be analyzed. However, if the focus
is on the dynamic behavior of the targets, the analysis of one static time frame is not
sufficient, all related frames need to be analyzed to extract relevant information regarding
each specific target. Therefore with valid detection points, a tracking method is necessary
to associate the detection points to each target.

The objective of the target tracking in this paper is to locate the main target signal,
so that the surrounding which contains the micro-Doppler information can be extracted
for later analysis. All detection points have already gone through the clutter removal and
CA-CFAR noise reduction in chapter 3. However, depending on the tracking range
requirement, the time gain is optional for close range tracking experiences.

In this chapter, target tracking is divided into single-target and multi-target tracking
depending on the use case. The popular Kalman filter is introduced to estimate the
location of the target based on existing detections. In multi-target tracking, the Hungarian
algorithm is used to solve the assignment problem between the target detection and

current tracks. In the end some tests are discussed to show the result of the tracker.

4.1 Kalman Filter

Measurements (also known as the observations) of the system states usually contain
statistical noises, they are thus cannot be used directly. The Kalman filter is an optimal
estimator that estimates current system states by calculating the joint Gaussian
distribution based on its last states. It minimizes the mean square error of the estimated
system state by treating all noises as Gaussian. The recursive behavior that it only
depends on the last states to makes the estimation contributes to the small memory
footprint, which makes it especially suitable for embedded systems with less resource.
Figure 22 below shows the typical workflow of a Kalman filter, X is the estimated system

state variable, Z is the measurement and X is the prediction [15].

30



Kalman filter works only with a linear system model with Gaussian distribution.
However, the angle component of the radar measurement is nonlinear. There are two
usual methods to perform Kalman based tracking on common radar signals. One method
employs standard linear Kalman filer which uses Cartesian coordinates translated from
the polar coordinates. Another uses the Extended Kalman filter to approximate the
nonlinear system model with a linear system model, and therefore can use the polar

coordinates directly.

i Update step

( N

Calculate Kalman Gain K

Prediction step

Predict system state X o Update estimation X with

and covariance P P input Z and prediction X

Update estimation covariance P

Figure 22: Kalman filter work flow

In principle, the radar measurement frames can also be viewed as pure video frames,
and then the target tracking can be performed by apply Kalman filter on the pixels of the
range-Doppler plot. The angle measurement can be used as the extra property of the
target to help in the target association process. In practice, this method may not work well
with targets that have similar range-Doppler profiles, because they may be detected as
one target. However, if angle detection is not required, it should work well for the single
channel FMCW radar.

In this paper, the standard linear Kalman filter is used. Below is the system model
for the Kalman filter.

Since the measurement cycle 7T of the Infineon radar is about 60ms, the velocity of
targets between each measurement can be seen as constant. Thus the target movement

model can be simplified to a constant velocity model.
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Each radar detection point m, 4 has three components [r,d, 8] from the range-
Doppler frame a, 4 and angle map 6, 4. r it is the distance between the target and the
radar. d is the radial velocity of the target. 6 is the azimuth angle of the target. Figure 23

shows the coordinates overview of target A.
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Figure 23: coordinates overview

The converted Cartesian coordinates is shown as:

X1 _ [r-sin(6)
[}’] - [r - cos(0) £q.3.9
Consider the current system states at t as:
Xe=[xyvev, ] Eq. 3.10 [8]

The state prediction equation for Kalman filter is shown in Eq. 3.11, B is the control
matrix and u is the control input vector. Since the system has no external control input,
B-u=0. w is the process noise with Gaussian distribution, which correlates to the

covariance matrix E,, A is the state transition matrix.

Xe=A-Xe 1 +B-ut+wey Eq. 3.11 [8]
With
1 0T O
_10 1. 0 T
A= 00 1 0 Eq. 3.12 [§]
0 0 0 1
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Eq. 3.11 can be written as below:

x 1 0T O x Wy

y| o1 0 7| |¥ wy

ol =10 o Y o +lwl| Easass
Uy t 0 0 0 1 vy t—t va t—1

The measurement matrix Z; can be written as below; n is the measurement noise,
which correlates to the covariance matrix E,:

Z,=H-X,+n, Eq. 3.14 [8]

Since only location of the target is measured, the observation matrix H contains only

the Cartesian coordinates x and y, shown below:

1 0 0 O

01 0 o Eq. 3.15 [8]

-

In the prediction step, the state prediction X, and covariance prediction P, can be
calculated as:
Xe=A-X,_4 Eq. 3.16 [8]
P,=A-P_, AT +E, Eq. 3.17 [8]

In the update step, the Kalman gainK;, the state estimation X; and covariance

estimation Pycan be calculated as:

K,=P, -HT-(H-P,-HT + E,)™" Eq. 3.18 [8]
X, =X, +K, - (z,—H-X,) Eq. 3.19 [8]
P,=(—-K,-H) P, Eq. 3.20 [8]

The state noise covariance matrix E,, is provided as:

- 3
o
4 2

4 3
0 T 0
Ex=|, Eq. 3.21 [8]
o 12 0
2
3
o T o 72
- 2 .
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The measurement noise covariance matrix E, is written as:

Iz O
Ez =10 zy]

Zy and z,, are chosen experimentally.

Eq. 3.22[8]
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4.2 Single target tracker

If only one target is assumed in the radar field of view, then the objective of target

tracking is to find the most possible location for that target in each frame. Only one track

needs to be maintained. For a more simplified tracking experience, the following

assumptions are made for the single target tracker:

1. There is at most one active target in the current measurement frame, hence one

track.

2. The detection that is closest to the prediction is assumed to be the current target.

3. The start location of the target is known, which is the initial condition for the

Kalman filter.

4. The target has movement limitations (e.g., velocity limitation); it is utilized to

remove outliners.

Figure 24 below shows the core work flow overview of the single target tracker.

1, calculate Kalman prediction

7

2, Polar to Cartesian conversion for all

detection points.

7

3, Calculate distance array between

detection points and prediction point

6, update current location

4, Outliner and noise points removal

5, calculate Kalman estimation

Figure 24: Single target tracker work flow
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In Step 1, the initial location of the target is assumed to be (0, 0), then the location
prediction is calculated. Here z, and z,, are chosen to be le-2.

In Step 2, the polar coordinates of all input detections are converted to Cartesian
coordinates.

In step 3, in order to find the most possible location of the target. The distance
between all detections and the prediction point is calculated. Moreover, the detection that
has the smallest distance value is chosen to be the target measurement.

In step 4, before the target can be used in the Kalman update process in step 5, the
validity of the target measurement needs to be checked. Unqualified target measurements
are considered to be outliners and are ignored for further process. There are usually two
types of outliners: the first type is noise point (described in chapter 3.1). The second type
is that it exceeds the movement limitations of a normal target (e.g. moving too fast). In
this case if the measurement is still considered too far away from the prediction (distance
is larger than g), it is considered to be an outliner. If there is no qualified measurement
input, then the current prediction is used as the measurement input for the Kalman filter.

Figure 25 shows an overview of the two types of outliner. Consider point A is the
current prediction, point D is the noise, and point C is the rejected outliner that is too far
away. Point B is the qualified measurement input. If C or D shows up in step 3 as the

input candidates, then both points will be rejected, and current input is still chosen to be

point A.
X

//’ B.\\

7 \
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Figure 25: outliner C and D

Step 5 calculates the estimated target location.

Step 6 updates the estimated target location to the track for further processes.
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The single target tracker is a simple yet effective tracker for one target scenario. In
this paper it is mostly used to extract the multiple feature sets of people’s walking

patterns and later for measurements.

4.3 Multi-target tracker

In situations of the multi-target scenarios, most of the assumptions of the single
target tracker do not hold. Different detections need to be associated with different tracks;
the multi-target assignment is more complicated than the single target case. A track
management system needs to be established to maintain each track.

Consider the following properties of a track: alive (a), penalty (p) and error (e). Also
three states of each track: untracked (state: 0), tracked (state: 1) and lost (state: -1)

a: the number of valid target inputs of a track.

p: the number of continuous updates without valid target input.

e: the mean error between the target input and estimation, calculated as the mean
Euclidean distance between input Z; and the estimation X; with the formula Eq. 4.1

below, N is the number of time steps:

1
e = ;ZLIIZt — Xl Eq. 4.1

initial

update/a++, p=0
update/a++, p=0

1
Tracked

0
Untracked

(p>50)||(e>5)/
p=0

no update/p++ no update/p++

Lost @ exit

Figure 26: track state diagram
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Figure 26 shows the proposed states diagram for the track management system. All
tracks initially start in untracked state 0. The following described the transition between

each state:

In untracked state 0:
1. [Ifatrack receives a valid update, a=a+1, p=0.
2. Ifatrack has no update at the current time step, then p=p—+1.
3. Ifa> 20, it is considered to be a valid track and transfer into tracked state 1.
4

If p > 10, then it is considered to have lost target and downgrade to lost state -1.

In tracked state 1:
1. [Ifatrack receives a valid update, a=a+1, p=0.
2. [If a track has no update at the current time step, then p=p+1.
3. Ifp> 50, then it is considered to have lost target and downgraded to untracked
state 0.
4. Similarly, if e > 5, then the quality of the current track has become too low, it

will also be downgraded to state 0.

In lost state -1:

1. All tracks in state -1 will no longer receive updates and are subject to removal.

All tracks are estimated path for the target, the primary purpose of the state
transition is to separate the low-quality and high-quality tracks. Tracks with different
quality should be treated differently, because some early stage low quality track may
compete with the high-quality track for inputs, which often results in false track
detection. The proposed state manage system solves such issue.

A weighting factor could also be considered at the tracked and untracked tracks. The
tracked track should have a higher chance than the untracked track for input candidates.
The factor could be based on the similarity between the estimated target and the input.
However, such factor is not implemented in this paper.

In track management, the assignment problem is of vital importance.
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4.3.1 Hungarian algorithm

The Hungarian algorithm [16] is a combinatorial optimization algorithm that solves
the assignment problems. It has two ways to formulate the problem: as a matrix or as a
bigrah. In this paper, the matrix formulation is discussed.

Assume the following radar tracking problem: consider there are two radar frames
contain target detections, there are M targets in the previous frame A and N targets in
current frame B. Find the most likely matching that the M targets are associated with the
N targets, so that targets can be tracked. To simplify the case, assume M=N.

To qualify the most likelihood matching, a matching score table needs to be
calculated. Each element in the table describes how likely a target in A is matched to a
target in B. Similar to the single target tracking; the distance between the two targets is
chosen to be the table element. The closer two targets are in the two frames, the more
likely they are the same target. Total cost E is all the distances from all targets added
together, it is the total assignment cost for current frame B.

The assignment problem can be formalized as:

Given a N X N matrix of cost {X i j}, determine a N X N perturbation matrix M; that

minimizes the total cost E:
minimize: E = Y}, ¥ M;; X;; Eq. 4.2

subject to:Vi ¥i_ My = 1,¥j ¥i_, My = 1,M;; € {0,1} Eq. 4.3

The matrix formulation if the Hungarian algorithm describes several steps of
operations that performed on the cost matrix {Xij}, so that the total cost E can be
minimized when the algorithm terminates. Figure 27 illustrates the algorithm overview.
The algorithm is implemented in Matlab. Since step 2 and step 4 have more complicated

processes, they are described separately.
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Figure 27: Hungarian algorithm flow chart

Step 1; for each row, find the minimum element of each row, and subtract it from
that row. For each column, find the minimum element and subtract it from that column.
Now each row and column has at least one zero

Step 2; decide if a solution can be found using the existing zeros. If yes, the solution
is then found. It has already been proven that after step 1, the solution does not change.
The detailed algorithm to check if the cost matrix has a solution is described later.

Step 3; if a solution cannot be found, find the minimal number of lines that can
cover all the existing zeros.

Step 4; if the number of total cover lines is less than the number of rows (or
columns); find the minimum element of all elements that are not covered by any lines. All
elements that are not covered by any line need to subtract the minimum element. All
elements that are covered by both row line and column line need to add the minimum
element. If the number of total cover lines equals the number of rows (columns), there
exists a solution from all the existing zeros in the cost matrix. Then it goes to step 2 to
check if a solution can be found.

Step 5; if a solution can be found, the algorithm terminates. The path cost is then

calculated.
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The detailed algorithm of step 2:

while finish = 0:
if there is only one 0 in each row, then
replace the 0 as -2;
replace all Os in the same column as -1;
end
if there is only one 0 in each column, then
replace the 0 as -2;
replace all Os in the same row as -1;
end
if there is no more 0s in current matrix, then
solution is found, finish = 1;
else
if more than one row has more than one 0, and more than one column has more
than one 0. Then it’s not possible for the iteration steps to replace all Os,
manual intervene is therefore required.

find the row or column with least number of Os;

replace the first 0 in that row/column with -1, and continue iteration;

end

end

end
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The detailed algorithm of step 3 is shown as following, the list r, and list c contains
the row number and the column number that corresponds to the lines that cover all Os in

the cost matrix.

execute step 2 to replace all prime Os to -2, and replace normal Os to -1;
mark the rows that does not contain -2 in list_r;
while finish = 0:
for each row in list r,
find all -1s, and find the -2 in the same column;
save the column number of the found -1 in list_c;
save the row number of the found -2 in list_r;
end
if all -1s in the cost matrix is processed, then
Finish = 1;

end

end

reverse select all rows that are not marked, save in list r;

The detailed algorithm of step 4 is shown as following,
find the minimum element that is not covered by the 0 cover line;
all elements that are not covered by any line need to subtract the minimum element;
all elements that are covered by both row line and column line need to add the minimum

element;

However, the above mentioned implementation of 